Syllabus
- Lax pairs and examples of integrable systems [BBT07, secs.2.4-2.9]
- Lax pairs for tops ([BBT07, sec.3.1] examples 1 and 2)
- Integrable hierarchy in classical mechanics ([BBT07, sec.3] eqs. (3.37), (3.45))
- Free bosons, free fermions, -function definition, bilinear identity [Mor94, secs.4.2, 4.3]. Vertex operators [BBT07, sec.9.3]. Grassmanian [BBT07, sec.9.6] and determinant formula ([BBT07] eq. (9.61))
- Boson-fermion correspondence and pseudodifferential operators [BBT07, secs.9.7-9.8]. Kadomtsev-Petviashvili (KP) hierarchy ([BBT07] eq. (9.74))
- Adler trace for pseudodifferential operators [BBT07, sec.10.1]. KP equation [BBT07, sec.10.2]
- KP solutions: solitons (see fig. 1), rational, periodic
- Korteweg-De Vries hierarchy. Reduction from to affine . Solutions
Recommended books and resources
- Big yellow book [BBT07], you don't need everything here
- Small Kyoto school book [MJD00]. The goal of the course is more-or-less to understand the set of topics covered here
- Eternal classic [Mor94]. Quite unique text covering a unique set of topics. You don't need everything here, but you'll need more in the future (see e.g. last Matrix Models course page)
- Other integrability courses [Aru07; Bei14; Zab25; Иса19]. Immediate importance of some of them for us can be very indirect. Broaden your perspective!
References
[BBT07]
O. Babelon, D. Bernard, and M. Talon, Introduction to classical integrable systems, 1st ed. Cambridge University Press, 2007.
[Mor94]
A. Y. Morozov, “Integrability and matrix models,” Phys.-Uspekhi, vol. 37, no. 1, pp. 1–55, 1994, doi: 10.1070/pu1994v037n01abeh000001. arXiv: hep-th/9303139.
[MJD00]
T. Miwa, M. Jimbo, and E. Date, Solitons: differential equations, symmetries, and infinite-dimensional algebras. in Cambridge tracts in mathematics. Cambridge University Press, 2000.
[Иса19]
А. Исаев, “Введение в теорию интегрируемых систем,” 2019. Available: https://teach-in.ru/file/synopsis/pdf/integrable-systems-M.pdf
[Zab25]
A. Zabrodin, “Integrable many-body systems and nonlinear equations,” 2025. Available: https://www.youtube.com/watch?v=CX_gVEiOuak&list=PLLGkFbxve673k5uRnLpjgM1U2p9M5oeLx
[Bei14]
N. Beisert, “Integrability in qft and ads/cft,” 2014. Available: https://edu.itp.phys.ethz.ch/hs14/14HSInt/IntAdSCFT14Notes.pdf