Weingarten formula

See [Col03; CŚ06; Wei78].

(1)

where for \( \sigma \in S_n \)

\begin{equation}
\operatorname{Wg}_{N}(\sigma)
=\sum_{\lambda\vdash n\atop \ell(\lambda)\le N}
\frac{s^2_{\lambda}(\delta_{\boldsymbol{\cdot},1})}{s_{\lambda}(N)}
 \chi^{\lambda}(\sigma) .
\end{equation}
(2)

Schur polynomials \( s_\lambda \) are implemeted e.g. in SageMath, and characters \( \chi^{\lambda}(\sigma) \) can be obtained either using charater_table() or via Frobenius characteristic map from Schurs.

\begin{equation}
\int_{U(N)}dU \left( \prod_{k=1}^n U_{i_k a_k} \right)\left( \prod_{m=1}^p U_{j_m b_m}^{*} \right)
=0
\end{equation}
(3)

for \( p \ne n \) because the Haar measure is invariant under the central \(U(1) \subset U(N)\),

\begin{equation}
U \to e^{i \theta} U, \qquad dU \to dU,
\end{equation}
(4)

while under this phase shift

\begin{equation}
U_{ia} \to e^{i \theta} U_{ia}, \qquad {U_{j b}^{*}} \to e^{-i\theta}{U_{j b}^{ *}},
\end{equation}
(5)

the integrand picks up a factor \(e^{i\theta(n - p)} \). Hence for \( n \ne p \)

\begin{equation}
\int_{U(N)}dU \left(\prod_{k=1}^n U_{i_k a_k}\right)
               \left(\prod_{m=1}^p {U_{j_m b_m}^{*}}\right)
= e^{i\theta(n-p)} I \quad\forall \theta
 \Longrightarrow I=0.
\end{equation}
(6)

References

[CŚ06]
B. Collins and P. Śniady, “Integration with respect to the haar measure on unitary, orthogonal and symplectic group,” Comm. Math. Phys., vol. 264, no. 3, pp. 773–795, 2006, doi: 10.1007/s00220-006-1554-3. arXiv: math-ph/0402073.
[Col03]
B. Collins, “[],” Int. Math. Res. Notices, vol. 2003, no. 17, p. 953, 2003, doi: 10.1155/s107379280320917x.
[Wei78]
D. Weingarten, “Asymptotic behavior of group integrals in the limit of infinite rank,” J. Math. Phys., vol. 19, no. 5, pp. 999–1001, 1978, doi: 10.1063/1.523807.